

Airborne remote sensing instrumentation for the National Ecological Observatory Network

NEON, Inc. Airborne Observation Platform 1685 38th St Suite 100 Boulder, CO 80301 Joel McCorkel
Michele Kuester
Brian Johnson
Tom Kampe
Keith Krause

JACIE 2011 – Boulder, CO

NEON's mission is to enable understanding and forecasting of climate change, land use change, and invasive species on continental-scale ecology -- by providing infrastructure and consistent methodologies to support research and education in these areas.

- **Information infrastructure:** Consistent, continental, long-term, multi-scaled data sets that serve as a context for research and education. All data free and openly available.
- **Physical Infrastructure:** A research platform for investigator-initiated experiments, new sensors and observations at NEON sites.

Grand Challenges in Environmental Sciences

- 1. Biodiversity
- 2. Biogeochemical cycles
- 3. Climate change
- 4. Ecohydrology
- 5. Infectious disease
- 6. Land use
- 7. Invasive Species

National Research Council Press 2001 Washington DC

National Research Council Press 2003 Washington DC

NEON groups

Biological sampling (FSU)

Aquatics and Stream Experiment (STREON)

Flux towers (FIU)

Airborne remote sensing (AOP)

Satellite remote sensing (LUAP)

Civil science

NEON's 60 sites in 20 Domains

NEON scaling Strategy

- NEON mission
- Airborne package
 - Imaging spectrometer
 - Operations
 - Calibration plan
- Pathfinder Flight 2010 with AVIRIS
 - Airborne data
 - Ground data

Role of Airborne Remote Sensing

- AOP will observe invasive species, land use drivers and ecosystem responses surrounding the NEON Core and Re-locatable sites
 - land cover
 - vegetation structure
 - Invasive plant species
 - biochemical and biophysical properties
 - ecosystem functioning
- Bridge scales from organism and stand scales to the scale of satellite based remote sensing (e.g. meter-scale)
- Observe targets of opportunity (e.g. PI-science, wildfires)

Airborne Operations

- 2 aircraft with identical payloads to cover sites
- 7-months, 1,100 flight hrs flight season
- 3rd Payload for backup
 & new science, targets
 of opportunity

Airborne Observation Platform

Imaging SpectrometerJPL

Waveform lidar

Optech ALTM Gemini system

Applanix GPS/IMU

High-resolution digital camera

Applanix digital airborne camera

Neon Imaging Spectrometer Design Verification Unit (DVU)

- Pushbroom imaging spectrometer
- Spectral range: 380 2510 nm
- Spectral sampling: 5 ± 0.5 nm
- FOV: 34 ± 1 degrees
- IFOV: 1 ± 0.1 mrad
- Radiometric sampling: 14 bit
- Crosstrack swath: 1 km @ 1 km AGL
- Spectral-cross-track uniformity: >95% uniformity
- Spectral-IFOV: > 95% uniformity
- Configuration: Two-mirror off-axis telescope, single Offner spectrometer with multi-blaze grating, mechanical coolers

Status of Airborne Observation Platform

DVU Development status

- 2008-Dec Completed JPL conceptual design study & early risk reduction tasks
- 2009-Feb Subsystem design reviews
- 2009-Oct 2012-Apr
 - Spectrometer design verification unit (DVU)
 - Prototype algorithms
 - Flight campaigns (inc. 2010 pathfinder)

Calibration timeline for airborne platform

Spring

Pre flight season laboratory characterization at NEON HQ in Boulder, CO Pre flight season operational test.
Coincident measurements of:

- -3 airborne platforms
- -Satellite sensors
- -Ground-based reflectance and atmosphere

Flight season characterization:

- -On-board calibrator
- -Known test sites
- -Solar radiation based calibration

Calibration Facility – Spectral

Monochromator

Rare gas spectra

Laser sphere

SRM 2065 - Ultraviolet-Visible-Near-Infrared Transmission Wavelength/Vacuum Wavenumber Standard

Calibration Facility – Radiometric

NIST irradiance standard

Integrating-sphere source

NEON Domain 3 core site: Ordway-Swisher Biological Station, Florida

Prototype to incorporate multiple NEON datastreams to

- Develop scaling strategies
- Ground-truth airborne measurements

Field sampling measurements

- Tree diversity
- Vegetation structure
- Leaf Area Index (LAI)

Airborne measurements

Imaging spectroscopy

Pathfinder 2010 photos

Pathfinder 2010 – Imaging Spectrometer

Pathfinder 2010 – Waveform lidar

Lidar

Leaf Area Index data

EO-1 on September 3, 2010

Hyperion = pink footprint Advanced Land Imager = yellow footprint Campaign area = Black outline

Radiometric Cal site - Landsat 5TM

AVIRIS and ground spectra

Measurements for vicarious calibration

Gainsville Airport Test Site

Ground reflectance

Atmospheric characterization

Ordway Test Site

OSBS veg cal target reflectance

AOT 500 nm on Sept 4, 2010 at OSBS

- NEON airborne remote sensing will provide a remote sensing capability beyond existing systems in its ability to produce quantitative information about ecosystems drivers and responses with annual coverage
- Airborne instrumentation will provide sub-meter/meter scale measurements to bridge scales from organism and stand scales to the regional scale
- NEON data system will enable free and open exchange of scientific information from the Observatory

BACKUP / DELETED SLIDES

Airborne System Description

- Three airborne remote sensing payloads
 - Imaging spectrometer
 - Waveform lidar
 - High-resolution camera
 - GPS-Inertial measurement unit
- Leased Twin Otter aircraft
- Instrument maintenance and calibration facility
- Science and flight operations

Payload Integration Mount (PIM)